FibeR-CNN: Expanding Mask R-CNN to improve image-based fiber analysis

نویسندگان

چکیده

Fiber-shaped materials (e.g. carbon nano tubes) are of great relevance, due to their unique properties but also the health risk they can impose. Unfortunately, image-based analysis fibers still involves manual annotation, which is a time-consuming and costly process. We therefore propose use region-based convolutional neural networks (R-CNNs) automate this task. Mask R-CNN, most widely used R-CNN for semantic segmentation tasks, prone errors when it comes fiber-shaped objects. Hence, new architecture - FibeR-CNN introduced validated. combines two established architectures (Mask Keypoint R-CNN) adds additional network heads prediction fiber widths lengths. As result, able surpass mean average precision by 33 % (11 percentage points) on novel test data set images.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostate segmentation and lesions classification in CT images using Mask R-CNN

Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...

متن کامل

R-CNN minus R

Deep convolutional neural networks (CNNs) have had a major impact in most areas of image understanding, including object category detection. In object detection, methods such as R-CNN have obtained excellent results by integrating CNNs with region proposal generation algorithms such as selective search. In this paper, we investigate the role of proposal generation in CNN-based detectors in orde...

متن کامل

ME R-CNN: Multi-Expert R-CNN for Object Detection

Recent CNN-based object detection methods have drastically improved their performances but still use a single classifier as opposed to ”multiple experts” in categorizing objects. The main motivation of introducing multi-experts is twofold: i) to allow different experts to specialize in different fundamental object shape priors and ii) to better capture the appearance variations caused by differ...

متن کامل

Interpretable R-CNN

This paper presents a method of learning qualitatively interpretable models in object detection using popular two-stage region-based ConvNet detection systems (i.e., R-CNN) [22, 61, 9, 26]. R-CNN consists of a region proposal network and a RoI (Region-of-Interest) prediction network.By interpretable models, we focus on weaklysupervised extractive rationale generation, that is learning to unfold...

متن کامل

Face R-CNN

Faster R-CNN is one of the most representative and successful methods for object detection, and has been becoming increasingly popular in various objection detection applications. In this report, we propose a robust deep face detection approach based on Faster R-CNN. In our approach, we exploit several new techniques including new multi-task loss function design, online hard example mining, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Powder Technology

سال: 2021

ISSN: ['0032-5910', '1873-328X']

DOI: https://doi.org/10.1016/j.powtec.2020.08.034